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A method is developed for the numerical evaluation of any term in the Born series 
for the off-shell partial-wave Tmatrix. At negative energies, the integrals may be evaluated 
by using any appropriate quadrature formula. Numerical analytic continuation of the 
negative energy results to positive energies is carried out by means of Pade approximants. 
The method enables the rate of convergence of eigenfunction expansions for the two- 
body off-shell amplitude to be accelerated. Numerical results are presented for a Yukawa 
potential and for a neutron-proton ?$ interaction. 

1. INTRODUCTION 

In a previous paper [l], an eigenfunction expansion, separable in the off-shell 
momenta, was derived for the two-body partial-wave T matrix. It was found from 
calculations that the rate of convergence of this expansion was often slow. How- 
ever, it was also shown that the rate of convergence could be improved by extracting 
the first few Born approximations and then evaluating the off-shell amplitude by 
employing a modified form of the eigenfunction expansion. 

In this paper, a method is developed for the numerical evaluation of any term in 
the partial-wave Born series at either positive or negative energies. The nth Born 
approximation is defined recursively in terms of the (n - 1)th Born approximation 
via a one-dimensional integral. At negative energies, the numerical integration 
may be carried out by using any appropriate quadrature formula such as a Gauss 
formula or a self-correcting application of Simpson’s rule. A numerical analytic 
continuation of the negative energy results to positive energies through the upper 
half k2 plane (k2 being the energy in the center of mass frame) is then performed by 
means of Pad6 approximants satisfying the required high-energy behavior. This 
approach avoids the problems associated with singular integrals at positive 
energies. 

In Section 2, a brief summary of relevant results obtained in a previous paper [l] 
is given, and it is shown how the separable eigenfunction expansion for the two- 
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body off-shell partial-wave amplitude is modified to various nonseparable forms 
as Born approximations of increasing order are introduced. 

In Section 3, the integral defining a recurrence relation between the (n - 1)th 
and nth Born approximations is transformed to a form which, at negative energies, 
enables the numerical integration to be carried out very easily by applying any 
appropriate quadrature formula. A Pad6 approximant, that is valid at both positive 
and negative energies and that satisfies a specified high energy limit, is then 
presented for the nth Born approximation. This approximant enables a numerical 
analytic continuation of the negative energy results to positive energies to be 
performed. 

Section 4 contains numerical results for an attractive Yukawa potential that 
does not form any bound states or resonances and for a neutron-proton triplet 
S-state interaction consisting of a sum of attractive and repulsive Yukawa 
potentials. 

2. PREVIOUS RESULTS AND THE NTH BORN APPROXIMATION 

The off-shell partial-wave T matrix Tl( p1 , pz ; k2) satisfies the Lippmann- 
Schwinger equation 

at energy k2. On the energy shell, the solution of this equation is [l] 

T,(k, k; k2) = -(2k/r) exp(W,) sin 8, , (2.2) 

where 6, is the phase shift with orbital angular momentum 1. The two-particle 
interaction V, vanishes whenever either of its momentum variables is infinite. 

The off-shell amplitude can be represented by the separable eigenfunction 
expansion 

in which 

(2.3) 

and 

&f&k) = s” V(r) u?(r) dr, 
0 

(2.4) 
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where j,(pv) is a spherical Bessel function of order I, ul(r) is the radial wave function, 
and the rlN(k2) are the eigenvalues of the Lippmann-Schwinger kernel. Very 
detailed descriptions of the methods used to compute the I,(k,p), M,(k), and 
TN(k2) are given elsewhere [l, 2,3]. (The methods involve the summation of various 
asymptotic expansions by means of Padt approximants satisfying specified high 
energy limits.) 

Previously reported results of calculations performed with Yukawa potentials 
indicated that the rate of convergence of (2.3) may often be slow. However, some 
improvement is achieved by extracting the first Born approximation to obtain 
the nonseparable form 

7-h , p2 ; k2) = T?(pl , p2 ; k2) + ; ; 1 yFNyk2) INck’ gNf’ “) , (2.5) 

where 

T?‘?P, 3 ~2 ; k2) = VZ(P, 9 ~2). (2.6) 

The rate of convergence may be further accelerated by also extracting the second 
Born approximation to yield 

Tc(pl , p2 ; k2) = i Tf”( PI , p2 ; k2) + $ ; 1 y;k2) lN(ky $$$k’ “) , 
t=1 

(2.7) 
where 

Tp’B(pl , p2 ; k2) = 1 m vz($~q;2v~;p2) dq, (2.8) 
0 

which has the high-energy limit Ti2jB N l/k2. 
The rate of convergence of the eigenfunction expansions may be continuously 

improved by introducing Born approximations of higher and higher order. In 
general, the two-body off-shell amplitude may be computed from the nonseparable 
series 

T,(p, , p2 ; k2) = i T;jB(pl , p2 ; k2) + ; ; I ““;t& lN(k’ ;$$k “) , 
t=1 

(2.9) 
where, for n 2 2, 

T,(n)B(~, , ~2 ; k21 

(2.10) Ti’-%z, P2 ; k2) dq 

k2 - q2 + ir 

Vl(Pl 3 91) V&l 3 92) *.* Vd%l 9 Pz) 
(k2 - q: + it-,)(k2 - qz + ic,) *a* (kB - qf,-l + ie,J 

x de dq, ... k-1, (2.11) 
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which has the high energy behavior 

+n)B 
1 N l/p-l). (2.12) 

The definition (2.10) of the nth Born approximation is, of course, far more useful 
for computational work than Eq. (2.11). 

Any bound states or resonances formed by the interaction V, in the Ith partial- 
wave will appear explicitly through the propagator [l - qN(k2)]-l in the early terms 
of each of the eigenfunction expansions in Eqs. (2.3), (2.5) (2.7), and (2.9) [I, 21. 
A bound state or resonance is formed whenever 

77h@) > 1, qr.dW = 1, (2.13) 

for a given I [4]. Thus, all the terms satisfying this condition must be included 
in the above eigenfunction expansions to preserve the correct analytic properties 
of the T matrix. Furthermore, all the terms for which 

I m(k2)/ > 1 (2.14) 

also must be taken. For sufficiently large n in (2.9), there is obviously no need to 
consider any term with 

I r)dk2)I < 1, for all k2, (2.15) 

but several such terms usually have to be included in the separable expansion (2.3) 
for the latter to converge. Calculations have shown that, at high energies, the 
rate convergence of (2.3) is extremely slow [2]. 

3. EVALUATION OF THE NTH BORN APPROXIMATION 

At negative definite energies, the transformation 

4 = x/u - 4, (3.1) 

which maps the interval 0 < q < cc onto the interval 0 < x < 1, can be substi- 
tuted into Eq. (2.10) to yield 

~,(nb(~, , p2 ; k2) = j-’ vZ(Pl 9 d T,(“-l)B(q, PZ ; k2) dx, 
(k2 - q2)(1 - x)” (3.2) 

0 

in which V, has a zero of order at least 2 since the integral in (2.10) exists. As the 
integrand does not contain a singularity within the range of integration when 
k2 < 0 this integral may be evaluated by employing any appropriate numerical 
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integration procedure such as a Gauss quadrature formula or a self-correcting 
application of Simposon’s rule. It is fairly easy to program a self-correcting 
procedure (i.e., an adaptive quadrature method) to evaluate Eq. (3.2) for general n 
if use is made of the recursion facility and Jensen’s device in ALGOL 60 [5]. It 
has been found that such a procedure requires very little computer time to perform 
the numerical integrations for the second and third Born approximations over a 
range of negative energies, but that a substantial amount of time is needed to 
compute higher-order negative energy Born approximations. 

A faster alternative to the use of an automatically self-correcting numerical 
integration procedure is to evaluate the negative energy TlsjB by employing a 
quadrature formula of the form 

T,(“‘B(q, ) p; k2) = c” w, vz/1(4t 3 qm) T~-l)Bbn 7 Pi k2) ) 
w - 4m2)U - &J2 WL=O 

(3.3) 

for t = 0, 1, 2 ,..., M, particularly when n 3 4. The weights w, and pivotal 
points x&m = 0, 1,2 ,..., M) are determined by the chosen quadrature formula. 

In view of the high energy limit (2.12), the nth Born approximation can be 
represented at both positive and negative energies by an [m + 2n - 2, m] Pade 
approximant [6, 7, S] 

in which K = ik, and where the coefficients a, and b, are functions of p1 and p2 . 
If the recurrence relation (3.2) is employed to compute the nth Born approximation 
at (2~2 + 2n - 1) negative energy values for a given pair of off-shell momenta, 
the curve passing through these points can be fitted by means of the approximant 
(3.4) by using the method described in a previous paper [3]. After the polynomial 
coefficients a, and b, have been determined, this PadC approximant can be employed 
to perform a numerical analytic continuation of the nth Born approximation (for 
the same pair of off-shell momenta) from negative energies to positive energies 
through the upper half k2-plane because such approximants preserve analytic 
properties of functions such as poles and zeros. 

It should be noted that the sum of all the terms in any of the series (2.3), (2.5), 
(2.7), or (2.9) for the two-particle off-shell amplitude may be represented by an 
[m, m] Pade approximant [9,10, 1 I]. The positions of the zeros of the denominator 
polynomial Q&K) will determine whether the T matrix has any bound state or 
resonance poles. 
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4. APPLICATIONS OF THE METHOD 

Computer calculations have been performed with interactions of the form 

(4.1) 

where Q,(...) is a Legendre function of order I of the second kind. In the coordinate 
representation, this potential has the well-known form 

WI = C At ev-w)lr. (4.2) 

The method of evaluating the nth Born approximation, described in the previous 
section, was first tested on the attractive Yukawa potential V(r) = -exp(-r)/r 
for which results concerning the phase shift 6, , the eigenvalues qN(k2), and the 
I,&, p) and M,(k) are already available [I, 2, 31. 

Table I contains values of the first five S-wave Born approximations at negative 
energies, with p1 = p2 = 1, computed from Eq. (3.2) (via a self-correcting proce- 
dure for Tc)’ and Ti3jB, and via Eq. (3.3) for Tc” and TA5jB). These results were 
fitted by the [m + 2n - 2, m] Pad6 approximant (3.4) in the variable K = ik, 
for n = (2, 3,4, 5), in order to perform numerical analytic continuations of the 
various Born approximations from negative energies to positive energies; positive 
and negative energy results obtained from the fits are presented in Tables II and III. 

The rate of convergence of the Padt approximants for the second and third 
Born approximations is displayed in Tables IV and V. It can be clearly seen that 
the [m + 2, m] approximant for TA2jB converges extremely rapidly as m increases, 
while the rate of convergence of the [m + 4, m] approximant for TA”‘” is a little 
less rapid. Further calculations have shown that the rate of convergence of the 
[m + 2n - 2, m] Padt approximant (3.4) becomes slower as the order n of the 
Born approximation TinjB . increases. This deterioration in the rate of convergence 
is probably due to the increasing complexity of the high-energy limit (2.12), which 
is a property of approximant (3.4). 

A simple check can be carried out to determine the accuracy of the imaginary 
part of the second S-wave Born approximation computed at positive energies 
from the [m + 2, m] approximant. By extracting the principal value integral, 
Eq. (2.8) may be rewritten in the form 
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TABLE I 

The First Five S-wave Born Approximations at Negative Energies” 

-ik 

T’“‘B 
0 

(n = 2) (n L-3) (n = 4) (n = 5) 

0.2 -0.111968 -0.052230 -0.024534 -0.011548 -0.456430 

0.4 -0.091023 -0.034875 -0.013560 -0.005296 -0.400904 

0.6 -0.075039 -0.024270 -0.008050 -0.002696 -0.366203 

0.8 -0.062685 -0.017457 -0.005044 -0.001476 -0.342812 

1.0 -0.053007 -0.012903 -0.003300 -0.000861 -0.326221 

1.2 -0.045321 -0.009760 -0.002236 -0.000523 -0.313990 

1.4 -0.039137 -0.007531 -0.001561 -0.000332 -0.304711 

1.6 -0.034102 -0.005912 -0.001118 -0.000219 -0.297501 

1.8 -0.029954 -0.004712 -0.000819 -0.000147 -0.291782 

2.0 -0.026504 -0.003806 -0.000613 -0.000102 -0.287175 

2.2 -0.023605 -0.003111 -0.ooo464 -0.000072 -0.283402 

2.4 -0.021149 -0.002570 -0.000357 -0.000052 -0.280278 

2.6 -0.019051 -0.002144 -0.000279 -0.000038 -0.277662 

2.8 -0.017246 -0.001804 -0.000221 -0.000028 -0.275449 

3.0 -0.015682 -0.001530 -0.000176 -0.OOOo22 -0.273560 

3.2 -0.014320 -0.001307 -0.000142 -0.000017 -0.271936 

3.4 -0.013126 -0.001124 -0.000116 -0.000013 -0.270529 

3.6 -0.012074 -0.000972 -0.000095 -0.oooo10 -0.269301 

3.8 -0.011142 -0.000846 -0.000079 -0.OOOOO8 -0.268225 

4.0 -0.010313 -0.000740 -0.000066 -0.OOOOO6 -0.267275 

a With p1 = pa = 1, computed from Eq. (3.2) for the potential V(r) = -exp(--u),:r. The 
value of leading Born approximation is VO(l, 1) = -0.256150. 

from which we obtain [for V(r) = -exp(-r)/r] 

Im T$)‘(l, 1; 0.25) = - = o 5 : gn [log (%)I’ -0.072654, 

Im T,‘2jB(l, 1; 1) = - & (log 5)’ = -0.103065, 

Im T,(2jB(l, 1; 2.25) = - = , 5 L go [log (%)I’ -0.081961, 

Im TtjB(l, 1; 4) = - 16~ --!- (log 5)’ = -0.051532. 



EVALUATION OF BORN APPROXIMATIONS 45 

TABLE II 

The Second and Third S-wave Born Approximations” 

qq1,1; k’) TpB(l,l; k2) 
-_____ 

k (Re TW) Um W)) (T(--ks)) We WW (Im TW) G-(---k*)) 

0.0 -0.1397 0 -0.1397 -0.0826 0 -0.0826 

0.1 -0.1386 -0.0159 -0.1248 -0.0794 -0.0199 -0.0652 

0.2 -0.1352 -0.0314 -0.1120 -0.0702 -0.0373 -0.0522 

0.3 -0.1296 -0.0463 -0.1008 -0.0571 -0.0502 -0.0424 

0.4 -0.1219 -0.0602 -0.0910 -0.0419 -0.0582 -0.0349 

0.5 -0.1122 -0.0726 -0.0825 -0.0267 -0.0615 -0.0290 

0.7 -0.0879 -0.0920 -0.0685 -0.ooo4 -0.0572 -0.0205 

1.0 -0.0458 -0.1030 -0.0530 0.0222 -0.0369 -0.0129 

1.5 0.0060 -0.0819 -0.0365 0.0232 -0.0065 -0.0067 

2.0 0.0229 -0.0516 -0.0265 0.0125 0.0033 -0.0038 

2.5 0.0238 -0.0315 -0.0201 0.0058 0.0042 -0.0023 

3.0 0.0205 -0.0198 -0.0157 0.0027 0.0033 -0.0015 

4.0 0.0140 -0.0091 -0.0103 0.0006 0.0017 -0.0007 

5.0 0.0097 -0.0048 -0.0073 0.0001 0.0009 -0.0004 

a Withp, = p2 = 1, computed respectively from [10,8] and [10,6] Padt approximants in the 
variable K = ik fitted to the results of Table I for the potential V(r) = -exp(-r)/r. 

It can be seen from Tables II and IV that the results for k = 0.5, 1.0, 1.5, and 2.0 
are in very close agreement with the above exact results. Thus, we may be confident 
that the Pad6 approximant (3.4) provides a simple reliable representation and 
numerical analytic continuation of at least the second Born approximation, and 
also probably of high-order Born approximations too. However, the zero energy 
value of the fifth S-wave Born approximation obtained from the [lo, 21 approxi- 
mant appears to be incorrect because its magnitude should be smaller than that 
of the fourth Born approximation at that energy. 

An indirect check can be carried out to estimate the accuracy of the third, 
fourth, and lifth S-wave Born approximations computed from both Eqs. (3.2) 
and (3.4). Table VI compares two methods of evaluating the sum of the first five 
S-wave Born approximations at positive and negative energies. In one of the 
methods a [9,9] Pad6 approximant in the variable K = ik was fitted to the negative 
energy sums of the first five Born approximations displayed in the final column 
of Table I. In the other method, the sum was determined directly from the results 



46 M. S. STERN 

in Tables II and III. It can be seen that both methods yield identical results at 
almost every point at negative energies, while at positive energies, there is fairly 
good agreement at most points. We shall now compare the on-shell results of 
Table VI, i.e., the sums at k = 1, against the value of the on-shell S-wave T matrix 
obtained from Eq. (2.2). As the S-wave phase shift of V(r) = -exp(--r)/r at 
k = 1 is 6, = 27.51” [I], we find that 

T,,(l, 1; 1) = -0.261 - 0.136i. 

The on-shell sum computed from the [9, 91 approximant is closer to this result 
than the sum determined directly from the on-shell values in Tables II and III. 
In the first method of summation the errors in the numerical analytic continuation 
arise only from the [9,9] approximant, while in the second method each of the 
four Pade approximants employed to yield the results of Tables II and III contri- 
butes to the errors in the analytic continuation. 

TABLE III 

The Fourth and Fifth S-wave Born Approximations” 

k (Re 7’(k2)) (Im T(k2)) U-(-W) (Re T(W) (Im TW V--k’)) 

0.0 -0.04948 0 -0.04948 -0.078788 0 -0.078788 

0.1 -0.04468 -0.01820 -0.03423 -0.009841 - 0.020409 -0.019863 

0.2 -0.03293 -0.03087 -0.02453 -0.006461 -0.011668 -0.011548 

0.3 -0.01900 -0.03660 -0.01805 -0.007628 -0.008642 -0.007665 

0.4 -0.00599 -0.03681 -0.01356 -0.012064 -0.004800 -0.005296 

0.5 0.00483 -0.03314 -0.01037 -0.009770 0.007510 -0.003741 

0.7 0.01743 -0.01912 -0.00633 0.000769 0.002906 -0.001977 

1.0 0.01506 -0.00103 -0.00330 0.000626 0.000528 -0.000861 

1.5 0.00472 0.00391 -0.00132 0.000199 -0.000050 -0.000270 

2.0 0.00121 0.00320 -0.00061 0.000026 -0.000048 -0.000102 

2.5 -0.00077 0.00221 -0.00032 -0.ooooO1 -0.000016 -0.000044 

3.0 -0.00107 0.00037 -0.00018 -0.OOOOO2 -0.OOOOO5 -0.000024 

4.0 -0.00016 -0.00007 -0.OoOO7 -0.ooooO1 -0.000001 -0.ooooO6 

5.0 -0.oooo4 -0.OOoO3 -0.00003 -o.oooooO -0.oooooO -0.000002 

T?‘B(l,l ; k2) Z”6’(1 1. k2) 0 , 9 
___- __~--- 

“Withp, =pz = 1, computed respectively from [10,4] and [10,2] PadC approximants in the 
variable K = ik fitted to the results of Table I for the potential V(r) = -exp(--v),f. 
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TABLE V 

Rate of Convergence of the [nr T 4, m] Pad& Approximant at 
Positive Energies for TcbB (I, 1; P) 

[10,61 [9,51 WI [7,31 
k- ___--- 

(Re r) (Im T) We T) Um T) (Re T) (Im T) (Re T) Um T) 
--___ -. ___-- .--~- 

0.0 -0.08265 0 -0.08265 0 -0.08268 0 -0.08268 0 

0.5 -0.02667 -0.06148 -0.02667 -0.06148 -0.02674 -0.06139 -0.02673 -0.06140 

1.0 0.02217 -0.03690 0.02215 -0.03688 0.02228 -0.03709 0.02227 -0.03707 

1.5 0.02325 -0.00652 0.02325 -0.00634 0.02335 -0.00631 0.02333 -0.00633 

2.0 0.01246 0.00333 0.01248 0.00333 0.01231 0.00342 0.01232 0.00341 

DVI 
----~ 

(Re T) (Im T) 

[5,11 [4,01 
_~_____ 

We T) (hn T) (Re T) (h T) 

0.0 -0.08270 0 -0.08275 0 -0.08260 0 

0.5 -0.02677 -0.06134 -0.02684 -0.06118 -0.02649 -0.06161 

1.0 0.0223 1 -0.03720 0.02241 -0.03751 0.02173 -0.03648 

1.5 0.02343 -0.00623 0.02363 -0.00598 0.02299 -0.00598 

2.0 0.01226 0.00348 0.01210 0.00365 0.01298 0.00365 

u For the potential V(r) = -exp(-r)/r. 

Hence, if only the sum of the first y1 Born approximations is required at positive 
energies rather than the individual Born approximations, then the analytic con- 
tinuation obtained from a single [m, m] Pad6 approximant (in the variable K = ik) 
fitted to the negative energy sum of the first IZ Born approximations is likely to be 
more accurate than the analytic continuation determined by direct summation 
of the leading Born approximation plus (n - 1) approximants of the form (3.4). 

Table VII presents a comparison of the rates of convergence of the eigenfunction 
expansions (2.3) (2.5) and (2.7) for T,(l, 1; &l) for the Yukawa potential 
V(r) == -exp(-r)/r. (In evaluating these expansions use has been made of values 
of qN(k2), I,@, p), and M,(k) presented elsewhere [I, 21.) It is clearly observed 
that the convergence of the separable expansion (2.3) is rather poor but that 
considerable improvement is achieved with the nonseparable series (2.5) in which 
the first Born approximation has been extracted. In fact, the use of only the leading 
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TABLE VI 

The Sums of the First Five S-wave Born. Approximations for the Potential V(r) = exp(-r)/P 

k __- 

(Re 2 (k’)) @I-I I=, WI) CC, ( - keN We C, WN Um iL (kg)) CL (--kV 

0.0 -0.5576 , 0 -0.5576 -0.6067 0 -0.6067 
0.1 -0.5435 -0.0684 -0.4984 -0.5287 -0.0744 -0.5002 
0.2 -0.5078 -0.1218 -0.4564 -0.5009 -0.1112 -0.4564 
0.3 -0.4635 -0.1554 -0.4251 -0.4695 -0.1417 -0.4251 
0.4 -0.4197 -0.1726 -0.4009 -0.4380 -0.1600 -0.4009 
0.5 -0.3803 -0.1786 -0.3817 -0.4000 -0.1597 -0.3818 
0.7 -0.3174 -0.1710 -0.3534 -0.3262 -0.1654 -0.3535 
1.0 -0.2585 -0.1380 -0.3262 -0.2641 -0.1404 -0.3262 
1.5 -0.2235 -0.0807 -0.3009 -0.2220 -0.0845 -0.3009 
2.0 -0.2218 -0.0454 -0.2872 -0.2195 -0.0452 -0.2872 
2.5 -0.2274 -0.0266 -0.2789 -0.2273 -0.0251 -0.2789 
3.0 -0.2332 -0.0165 -0.2736 -0.2337 -0.0161 -0.2736 
4.0 -0.2414 -0.0074 -0.2673 -0.2417 -0.0075 -0.2672 
5.0 -0.2462 -0.0038 -0.2639 -0.2464 -0.0039 -0.2639 

a With p1 = pa = 1, computed from [9,9] Pad& approximants in the variable K = ik fitted 
to the results of Table I, and determined directly from the results in Tables II and III. The first 
Born approximation is Vb(l, 1) = -0.25615. 

* From [9,9] Pad6 approximants. 
c From Tables II and III. 

TABLE VII 

Comparison of the Rates of Convergence of the Eigenfunction Expansions (2.3), (2.5), and (2.7) 
for T,(l, 1; f 1) for the Potential V(r) = -exp( -r)/p 

Expansion (2.3) Expansion (2.5) Expansion (2.7) 

N (Re To(l)) (Im To(l)) (To0 -1) (Re To(l)) Om TOO)) (Td-1)) (Re T,(l)) (Im T,(l)) (T,(-1)) 

1 -0.315 -0.294 -0.246 -0.248 -0.154 -0.320 -0.261 -0.136 -0.326 
2 -0.372 -0.117 -0.302 -0.266 -0.139 -0.326 -0.261 -0.136 -0.326 
3 -0.290 -0.061 -0.318 -0.263 -0.134 -0.327 -0.261 -0.136 -0.326 

(i N is the number of eigenfunction terms used in these expansions. The S-wave phase shift 
at k = 1 yields the on-shell value T&l; 1) = -0.261 - 0.136i. 
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eigenfunction term in (2.5) yields a more accurate result than summation over the 
first three terms in (2.3) particularly at positive energies. It also can be seen that 
the inclusion of the first three eigenfunction terms in (2.5) leads to a result that 
differs only slightly from the on-shell S-wave amplitude calculated from Eq. (2.2). 
However, when using the nonseparable expansion (2.7) in which the first two Born 
approximations have been extracted, the inclusion of the leading eigenfunction 
term alone is sufficient to yield the correct value of the on-shell T-matrix. It should 
also be noted that the use of (2.5) with the first three eigenfunction terms, and of 
(2.7) with the leading eigenfunction term, has produced results of higher accuracy 
than the sums of the first five Born approximations presented in Table VI. 

The method of Section 3 was also applied to the neutron-proton triplet S-state 
potential [ 121 

V(r) = 4A exp( -2pr)/r - A exp( -pr)/r, (4.4) 

with A = 42.48 and p = 2.307 [13]. This interaction has a repulsive core and an 
attractive outer region. With the values of A and p just quoted, k2 = 1 represents 
an energy of 41.5 MeV in the center of mass frame. Table VIII displays the first 
four Born approximations, with p1 = pz = 1, computed at negative energies 
from Eq. (3.2). The resulting [m + 2n - 2, m] Padt approximant fits in the variable 
K = ik, evaluated at both positive and negative energies, are presented in Table IX. 
It can be clearly seen that in this case, the Born series diverges as predicted by 
Weinberg [4] for interactions that have any eigenvalues qN(k2) satisfying the 
inequality (2.14). The 3S, potential (4.4) has four such eigenvalues [2, 3, 131. 
Thus, in this case, the sum of the first n Born approximations cannot, by itself, 
provide an estimate of the off-shell T matrix. It must be used in the nonseparable 
series (2.9) only in conjunction with at least all the eigenfunction terms whose 
qN(k2) satisfy (2.14). 

The imaginary part of the second Born approximation computed at positive 
energies from the [IO, 81 approximant for the “S, interaction (4.4) may also be 
compared against the exact values calculated from Eq. (4.3), which yields 

Im T,‘2jB(1, 1; 0.25) = -0.338, 

Im T,(2jB(1, 1; 1) = -1.180, 

Im T,(2jB(1, 1; 2.25) = -3.043, 

Im TtbB(l, 1; 4) = -6.006. 

Thus, we find that the Table IX values of Im TA2rB(1, 1; k2) contain errors of 
about three units in the third significant figure. 
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TABLE VIII 

The First Four Born Approximations at Negative Energies” 

2-yJ(l,l; k2) 

-ik (n = 2) (n = 3) (Fl = 4) 

0.2 -15.6968 178.64 -2139.7 

0.4 - 15.4438 170.70 - 1978.4 

0.6 -15.1213 162.02 -1816.2 

0.8 - 14.7495 153.03 -1659.2 

1.0 - 14.3443 144.03 -1510.9 

1.2 -13.9183 135.23 -1373.1 

1.4 -13.4813 126.75 - 1246.4 

1.6 -13.0408 118.68 -1130.9 

1.8 - 12.6023 111.05 - 1026.2 

2.0 - 12.1699 103.88 -931.5 

2.2 - 11.7466 97.17 -846.1 

2.4 -11.3345 90.91 -769.1 

2.6 -10.9351 85.09 - 699.9 

2.8 - 10.5492 79.67 -637.6 

3.0 -10.1773 7464 -581.5 

3.2 -9.8197 69.98 -531.0 

3.4 -9.4764 65.65 -485.5 

3.6 -9.1472 61.64 -444.5 

3.8 -8.8317 57.91 -407.8 

4.0 -8.5296 54.45 -374.0 

“With pl=pz=l, computed from Eq. (3.2) for the “Sr 
potential (4.4). The value of the leading Born approximation is 
V,(l, 1) = 0.866803. 

As the phase shift of the potential (4.4) at k = 1 is 6, = 47.6”, the value of the 
on-shell amplitude obtained from (2.2) is 

T,(l, 1; 1) = -0.317 - 0.347i. 

The use of the separable expansion (2.3) with the four eigenfunction terms whose 
vN(k2) satisfy the inequality (2.14) does not provide an adequate approximation 
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to this result. The application of (2.5) with the four leading eigenfunction terms 
leads to an improved estimate for T,,(l, 1; l), while (2.7) yields a far more accurate 
result for this amplitude. 

5. CONCLUSION 

In this paper, a simple method has been presented for the numerical evaluation 
at positive and negative energies of any term in the Born series for the two-particle 
off-shell partial-wave T matrix. It has been found that a self-correcting procedure 
requires very little computer time to perform the numerical integrations for the 
second and third Born approximations over a range of negative energies, but that 
higher-order negative energy Born approximations should be computed from the 
recursive quadrature formula (3.3). After having determined c@’ at an adequate 
number of negative energy points for a given pair of off-shell momenta, only a 
few seconds are required on an ICL 1907 computer to construct a Pad6 approxi- 
mant fit of the form (3.4) and to evaluate it at many positive and negative energies 
for the specified value of n. (All the approximants that were employed to compute 
the various results presented in Section 4 were found to be stable at all energies 
with the single exception of the [IO, 21 approximant of Table III for TJ”‘” when 
evaluated at zero energy.) 

Furthermore, if only the sum of first IZ Born approximations is required at 
positive energies rather than the individual Born approximations, then a single 
[m, m] Pad6 approximant fitted to the negative energy sum of the first n Born 
approximations (for a given pair of off-shell momenta) is likely to yield the most 
accurate numerical analytic continuation to positive energies. This practical method 
of summing the leading terms in the Born series enables the rate of convergence 
of eigenfunction expansions for the two-body off-shell partial-wave amplitude to 
be accelerated by using the nonseparable series (2.9). 

It is, of course, well known that the most convenient form of the two-particle T 
matrix to use in the three-particle Faddeev equations is a separable eigenfunction 
expansion such as (2.3). Unfortunately, its rate of convergence for interactions of 
the form (4.2) is frequently not rapid enough to provide a useful approximation 
to the two-body amplitude, and so a modified accelerated form of the series, such 
as (2.9), may have to be employed instead. The numerical method developed in 
this paper, when used in conjunction with previous published results concerning 
techniques for computing the Z,(k, p), M,(k), and T#~,) [defined in Section 21, 
provides a practical tool for evaluating the nonseparable series (2.9) at positive 
and negative energies. 
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